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What this talk is about

* Derivative discretization for FD methods
— Time domain
— Explicit (derivatives approximated with stencils)

— Examples assume second derivatives
* Though other orders would be implemented exactly the same way

* Goal: provide sufficient background so that a scientist
can choose the right approach for the problem at hand

— Review implementation approaches and their tradeoffs
— Some performance analysis

— Experimental results showing throughputs
* Reasonably optimized (as opposed to highly optimized)
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Assumptions and definitions

Experimental setup:

* Fermi C2050, ECC off, 64-bit Linux, CUDA 3.2
3D data used in all experiments

— 512x512x512 (excluding the padding)

— Results can be extrapolated for 1D and 2D data with the same number

of elements

Dimensions: x, y, z

— X is the fastest varying, z is the slowest
Derivative discretization:

— Symmetric stencil with radius=R

— Assumes isotropic medium and non-stretched grid

— Number of stencil points:
* 1D: 2R+1
* 2D: 4R+1
* 3D: 6R+1



Relevant GPU details

Memory accesses are per warp
— Warp = 32 threads
— 32 addresses are converted into line requests

— For max perf: an access by a warp should be within a line
(or small number of lines)

GPUs need sufficient number of threads to saturate
memory and instruction bandwidth

— ILP helps to an extent (Vasily Volkov’s talk at GTC2010)

If there are barriers, it’s often better to have a few
smaller threadblocks concurrent per SM

— As opposed to one large one



PDEs with derivatives in 1 dimension

* Two types of kernels
— Determined by stencil memory access pattern

* Stencils along the fastest-varying dimension
— A thread needs a contiguous region of elements
— Adjacent threads’ regions overlap
— Staged through shared memory

* Stencils along other dimensions
— Adjacent threads access adjacent elements
— No region overlap
— Straightforward “marching” along the dimension



Two approaches for x-stencils

* One thread per output element
— Some threads also fetch halos

W_J\ ~ J\(_/

“halo” Input elements corresponding to output “halo”

* One thread per input element
— Threads for halos as well ( but don’t compute or write)

W_J\ ~ JW_J

“halo” Input elements corresponding to output “halo”



X-stencil performance
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256- vs 64-thread bloc

ks:

— Halos are a larger percentage of accesses for 64-thread blocks

e R=1:

64-thread block:
256-thread block: reads 264 values to produce 256

Accesses are in 32B lines, so in increments of 4 fp64 values

reads 72 values to produce 64

— Easier to saturate arithmetic pipelines with more threads
— Perf converges for larger orders:

Code becomes arithmetic rather than bandwidth bound




Stencils along “slow” dimensions

I”

 Each thread is responsible for a “pencil” of output
— “Marches” along the dimension
— Keeps the necessary number of elements in registers
* Per output element:

— Read one input element, do all the arithmetic
* Arithmetic intensity increases with stencil size
 Memory pressure doesn’t

— Manage values in registers (“advance” the queue)

Aead “marching” direction

. Values needed by a thread, stored in registers

Fastest memory dimension




template <int radius, int diameter>
__global__ void dy( TYPE* g_dy, const TYPE* g_input,
const int nx, const int ny, const int nz,
const int dimx, const int dimy, const int dimz )

int ix = blockldx.x * blockDim.x + threadldx.x;
int iz = blockldx.y * blockDim.y + threadldx.y;
int stride = dimx Compute indices for access
int idx_out = iz*dimx*dimy + ix;

intidx_in =idx_out - radius*stride;

TYPE buffer[diameter];

#pragma unroll

for(int i=1; i<diameter; i++)

{
buffer[i] = g_input[idx_in];
idx_in += stride;

}

/I #pragma unroll X
for(int iy=0; iy<ny; iy++)
{
#pragma unroll
for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1];
buffer[diameter-1] = g_input[idx_in];

TYPE derivative = ¢_coeff[0] * buffer[radius];
#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * ( buffer[radius-i] + buffer[radius+i] );

g_dy[idx_out] = derivative

idx_in += stride;
idx_out += stride;



template <int radius, int diameter>
__global__ void dy( TYPE* g_dy, const TYPE* g_input,
const int nx, const int ny, const int nz,
const int dimx, const int dimy, const int dimz )

int ix = blockldx.x * blockDim.x + threadldx.x;
int iz = blockldx.y * blockDim.y + threadldx.y;

Compute indices for access

int stride = dimx;
int idx_out = iz*dimx*dimy + ix;
intidx_in =idx_out - radius*stride;

TYPE buffer[diameter]; N

#pragma unroll

EOf("“ =1} i<diameter; i++) > Declare the local (register) buffer for values
bufferfi] = g_inputfidx_in]; Fill it up to start the computation

idx_in += stride;

} J

/I #pragma unroll X
for(int iy=0; iy<ny; iy++)
{

#pragma unroll

for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = ¢_coeff[0] * buffer[radius];
#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * ( buffer[radius-i] + buffer[radius+i] );

g_dy[idx_out] = derivative

idx_in += stride;
idx_out += stride;



template <int radius, int diameter>
__global__ void dy( TYPE* g_dy, const TYPE* g_input,
const int nx, const int ny, const int nz,
const int dimx, const int dimy, const int dimz )

int ix = blockldx.x * blockDim.x + threadldx.x;
int iz = blockldx.y * blockDim.y + threadldx.y;

Compute indices for access

int stride = dimx;
int idx_out = iz*dimx*dimy + ix;
intidx_in =idx_out - radius*stride;

TYPE buffer[diameter]; N

#pragma unroll

EOf("“ =1} i<diameter; i++) > Declare the local (register) buffer for values
bufferfi] = g_inputfidx_in]; Fill it up to start the computation

idx_in += stride;

} J

#pragma unroll 5 N
for(int iy=0; iy<ny; iy++)
{

#pragma unroll

for(int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1];

buffer[diameter-1] = g_input[idx_in];

TYPE derivative = ¢_coeff[0] * buffer[radius]; > M ain | OOp

#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * ( buffer[radius-i] + puffer[radius+i] );

g_dy[idx_out] = derivative

idx_in += stride;
idx_out += stride;




#pragma unroll 5
for(int iy=0; iy<ny; iy++)

{
#pragma unroll )
for( int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1] “Advance’” the local values
buffer[diameter-1] = g_input[idx_in]; )
TYPE derivative = c_coeff[0] * buffer[radius]; )

#pragma unroll
for(int i=1; i<=radius; i++)
derivative += c_coeff[i] * ( buffer[radius-i] + buffer[radius+i] );

> Compute the
derivative

J

g_dy[idx_out] = derivative,

idx_in += stride;
idX_out += stride;



#pragma unroll 5
for( int iy=0; iy<ny; iy++)
{
#pragma unroll N
for( int i=0; i<diameter-1; i++)
buffer[i] = buffer[i+1]; “Advance” the local values
buffer[diameter-1] = g_input[idx_in];

TYPE derivative = c_coeff[0] * buffer[radius]; A

#pragma unroll

for(int i=1; i<=radius; i++) > gé)rrir\]/gijit/eethe
derivative += c_coeff[i] * ( buffer[radius-i] + buffer[radius+i] );

g_dy[idx_out] = derivative,

idx_in += stride;
idX_out += stride;



Y-stencil throughput
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e /-stencil is pretty much the same




Bandwidth-bound
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Bandwidth-bound
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Y-stencil performance vs instructions issued
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Summary: PDEs with 1-dimensional derivatives

* Derivatives along the fastest-dimension tend
to be instruction-throughput limited

— Small threadblocks perform slower for low orders

* Derivatives along the “slow” dimensions stay
memory bandwidth limited until larger
orders
— Perform essentially as memcopies



PDEs with derivatives in 2 dimensions

 Two “subtypes”
— Combination of derivatives along one dimension

o° 0 ot 0 o° 0
+ + +
[82x 82y] [82x 822] [82y 822J

— Mixed derivatives
o° oa o°
OXoy OXOZ oyoz

* Implementation choices:

— Two-pass approach

« 2 kernel launches, 2" consumes the output of the 15t one

* More accesses per output cell, but halos are a small percentage of accesses
— Single-pass approach

* Fewer accesses per output cell, but halos can start dominating




Two pass approach

* Mixed derivatives:
— Straightforward: run 2 kernels in sequence
— 4 accesses per output cell

* Combination of “single” derivatives:

— 2" kernel needs a to read both the original data
and the output of the 15t kernel

— 5 accesses per output cell



Single-pass approach

* Derivatives including the fastest-varying dimension

— Compute the derivative in the “slow” dimension out of
registers, store into SMEM

— Compute the derivative in the “fast” dimension out of
SMEM

Aead “marching” direction

(J Stored in SMEM
(@ Stored in register
ﬁ Halo, stored in registers (only needed for mixed derivatives




Pxy throughput, fp64
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Single-pass approach e

 Mixed Derivatives not including the fastest-varying dimension
— Successive threads still need to access along the fastest-varying
dimension
* To get GMEM coalescing

— Use 2D threadblocks
* Tile the xy-plane with threadblocks
e Each threadblock “marches” along z dimension
* Load data and halos above/below at the front into SMEM, compute y-deriv
* Propagate y-derivs through registers, compute z deriv

Thread “marching” direction
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Pyz throughput, fp64
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Combinations of “single” derivatives

Stencil Radius
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Comments and conclusions

Understanding basic computer-architecture concepts allows for very
effective optimizations

— Know whether code is memory or instruction bound, optimize accordingly
* loop-unrolling pragma for {y, z}-stencils
* Choosing 1- or 2-pass approach for yz-stencils

— Keep mem system in mind when parallelizing

Output throughput does not decrease by much when increasing
spatial order from 2" to 4t" or 6"

— May allow working with smaller grids / longer time-steps

Fp64 stencil code is bandwidth-bound for smaller orders, instruction-
bound for larger ones

— Cross-over: 8t to 14t order in space
— Fp32 stencils are bandwidth bound for even greater orders
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